Что такое конденсатор
Конденсатором является электрическим элементом, который способен накапливать определенный электрический заряд. Главным параметром элемента считается емкость, которая рассчитывается в фарадах. 1 фарад это довольно большая величина. Современные конденсаторы имеют следующие обозначения емкости:
- пикофарад обозначается pF или пФ;
- нанофарад обозначается nF или нФ;
- микрофарад обозначается mF или мФ.
Принцип работы устройства достаточно прост. Работа и выдача импульса отличается только от тока в цепи, к которой он подключен.
Как измерить емкость конденсатора своими руками
Характеристики
Как элемент электрической цепи, конденсатор имеет такие параметры:
- Электрическая емкость, которая характеризуется свойством накапливания электрического заряда.
- Номинальное напряжение. Значение напряжения на обкладках, при котором элемент в течении срока службы сохраняет свои параметры.
При работе с электрическими цепями необходимо учитывать паразитные параметры, которые являются нежелательными:
- Ток утечки, который появляется из-за несовершенства диэлектрика, качества изоляции обкладок.
- Последовательное эквивалентное сопротивление, которое складывается из сопротивления выводов, сопротивление контакта вывод-обкладка, внутренних свойств диэлектрика.
- Эквивалентная индуктивность, в которую входят индуктивность выводов и обкладок.
- Тангенс угла диэлектрических потерь, характеризующий электрические потери в конденсаторе на высоких частотах.
- Температурный коэффициент емкости, показывающий, как она меняется в зависимости от температуры.
- Паразитный пьезоэффект, проявляющийся как генерация напряжения при физическом воздействии на диэлектрик (тряска, вибрация).
Эквивалентная схема
Устройство конденсатора
Простейший конденсатор состоит из двух металлических пластин (обкладок), разделенных слоем диэлектрика. Емкость (способность накапливать электрический заряд) увеличивается с ростом площади пластин и с уменьшением толщины изолирующего слоя.
Параметры простейшей конструкции слишком малы. Для ее увеличения есть два пути:
- Увеличение площади обкладок, что приводит к увеличению габаритов.
- Уменьшение толщины диэлектрика, приводящее к снижению номинального рабочего напряжения из-за электрического пробоя.
Вам это будет интересно Особенности трехфазной сети
Для того, чтобы избежать перечисленных проблем, разработаны специальные конструкции. Например, если сделать обкладки небольшой ширины и большой длины, их можно вместе с гибким диэлектриком свернуть в плотный цилиндр, получится цилиндрический конденсатор. Размещая пластины с диэлектриком попеременно, в виде слоеного пирога и чередуя подключение к выводам, получается прямоугольный компонент с большой эффективной площадью обкладок.
Разные типы конструкции
Еще один путь — использование в качестве диэлектрика тонкого оксидного слоя на поверхности металлической фольги и раствора проводящего электролита в качестве второй обкладки. Таким образом получается электролитический конденсатор, конструкция которого обладает самой большой емкостью.
Важно! Такие устройства имеют недостаток — соблюдение полярности подключения, что ограничивает их применение: оно возможно только в цепях постоянного тока в качестве сглаживающих фильтров.
Цепь переменного тока
В цепи переменного тока конденсатор является сопротивлением. Он быстро накапливает определенный заряд и постепенно его отдает. Накопление и полная отдача происходит во время смены электрической волны.
Цепь постоянного тока
В цепи постоянного тока заряд накапливается на пластинах, увеличивая величину разницы потенциалов на обкладках. Разница потенциалов увеличивается до величины напряжения. Как только она становится равна напряжению, общая цепь разрывается.
Типы конденсаторов
Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.
Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.
Самые доступные конденсаторы такого типа CBB65.
Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
Клеммы для удобства соединения сдвоенные или счетверённые.
Основные типы конденсаторов
Буквально несколько минут внимания следует уделить принципам строения и работы конденсаторов, а также разновидностям этих элементов схемы. Так будет проще понять, на чем строится методика проверки их работоспособности.
Итак, конденсатор представляет собой очень распространенный элемент электрической цепи, в котором происходит накопление заряда. Устройство нехитрое – в отличие от многих других элементов здесь нет никаких полупроводниковых переходов. По сути – это всего лишь две значительные по площади токопроводящие пластины (их обычно называют обкладками) равных размеров, разнесенные на небольшое расстояние одна от другой, то есть непосредственного электрического контакта между ними нет и быть не должно. Этот просвет заполняется диэлектрическим материалом.
Принятое условное обозначение конденсатора на схемах как раз очень наглядно показывает принцип его устройства.
Разделенные тонким просветом токопроводящие пластины имеют свойство накапливать электрический заряд.
Понятно, что в цепи постоянного тока проводимость через конденсатор отсутствует, так как цепь, по сути, разорвана. Но зато на его обкладках накапливается (конденсируется) электрический заряд. И чем больше площадь этих обкладок, тем больший заряд может быть накоплен. Показателем же этих возможностей является величина емкости конденсатора.
Эта физическая величина измеряется в фарадах (F). Один фарад – это способность накопить 1 кулон заряда при разности потенциалов на обкладках в 1 вольт. Но пусть эти «единички» не вводят в заблуждение: на самом деле 1 F – это просто огромный показатель. На деле же приходится иметь дело с куда меньшими величинами:
1 mF = 0.001F = F×10⁻³ — миллифарад;
1 μF = 0.001mF = F×10⁻⁶ — микрофарад;
1 nF = 0.001μF = F×10⁻⁹ — нанофарад;
1 pF = 0.001nF = F×10⁻¹² — пикофарад
Несмотря на общность принципа устройства и действия, по своей конструкции конденсаторы все же могут иметь существенные различия.
Многообразие конденсаторов и по эксплуатационным параметрам, и по размерам –очень широко
Прежде всего, их можно разделить на две большие группы – полярные и неполярные конденсаторы.
- Для неполярных элементов не имеет никакого значения взаимное расположение их обкладок в общей схеме. Такие конденсаторы выпускаются в следующих основных «обличиях».
Керамические конденсаторы – в качестве разделительного диэлектрического слоя между обкладками применяется керамический состав. Эти элементы характеризуются компактностью, широким диапазоном допустимых рабочих напряжений, дешевизной наряду с довольно высокой надежностью и долговечностью.
Керамические конденсаторы
Для достижения более высоких показателей емкости требуется увеличивать площадь обкладок. Это достигается свертыванием в рулон (или в «гармошку») двух токопроводящих лент со специальным металлизированным покрытием (или даже лент из алюминиевой фольги) с размещённой между ними диэлектрической прокладкой. По такому принципу устроены бумажные, металлобумажные, слюдяные и пришедшие им на замену серебряно-слюдяные конденсаторы.
Серебряно-слюдяные конденсаторы
К неполярным относятся и мощные пусковые конденсаторы, имеющиеся во многих моделях бытовой техники, оснащенной электроприводами. Они собираются в достаточно габаритном корпусе цилиндрической или кубической формы, имеют обкладки из металлизированной полипропиленовой пленки и заполняются диэлектрическим маслом.
Принцип устройства пускового конденсатора: 1 – металлический корпус; 2 – обкладки – полосы полипропиленовой пленки с вакуумным металлизированным напылением; 3 – диэлектрическая пленочная прокладка; 4 – наполнение из диэлектрического нетоксичного масла; 5 – выводы-контакты для подключения к электрической схеме прибора.
Их не зря называют пусковыми – они способны накапливать очень значительный заряд для выработки мощного пускового импульса и для повышения коэффициента мощности электроустановок. Способны они и сглаживать значительные колебания в системах высокого напряжения.
- Полярные конденсаторы требуют, как понятно из названия, соблюдения полярности при установке их в схему.
Наиболее распространены на сегодняшний день полярные конденсаторы в алюминиевом цилиндрическом корпусе. Нередко такие элементы именуют еще «электролитическими». Такое название предопределяет тот факт, что свободное пространство между обкладками заполняется специальным электролитом. Диапазон габаритов и электротехнических показателей – очень широкий, но если неполярные компактные конденсаторы чаще всего по ёмкости максимально ограничиваются единицами микрофарад, то у электролитических счет может идти даже на тысячи μF, то есть единицы mF. На три порядка больше!
Электролитические полярные конденсаторы
Шагом вперед стало появление танталовых полярных конденсаторов, у которых соотношение размеров и возможных показателей емкости – намного выше. То есть это оптимальный вариант тех случаях, когда требуется компактность схемы наряду с высокой емкостью. Правда, такие детали значительно дороже, а кроме того – излишне чувствительны к пульсации токов и к превышениям допустимых напряжений, которые часто выводит их из строя.
Танталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями емкости.
Здесь были рассмотрены далеко не все формы выпуска конденсаторов, но принцип их строения, независимо от внешности, остается тем же.
Что такое емкость?
Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.
Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.
Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.
Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.
Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.
Какой он, современный мультиметр
Современный мультиметр — цифровой. Позволяет измерять много разного. Но для качественной прозвонки конденсатора необходим прибор, который умеет измерять ёмкость.
Радиолюбитель старой школы скажет, что можно обойтись и без такого режима, измеряя сопротивление. Но, это не совсем так, а для некоторых конденсаторов даже совсем не так.
Поэтому ищем прибор, у которого переключатель можно поставить на одно из значений, включающей латинскую букву F. Эта буква происходит от названия единицы измерения электрической ёмкости — фарада. Названа так единица в честь знаменитого английского физика Майкла Фарадея, а вовсе не актёра Семёна Фарады. Фарадею мы обязаны многими привычными нам электротехническими терминами. И единицей измерения ёмкости.
Маркировка на конденсаторах
Знать характеристики электронных приборов требуется для точной и безопасной работы.
Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).
На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.
Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.
Стандарт IEC использует обозначения:
- Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой «R». R8=0,8 пФ, 2R5 — 2,5 пФ.
- 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
- Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
- Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
- Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
- Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
- Кодировки — цветом корпуса.
Вычисление с помощью формул
Вычисление номинальной емкости элемента требуется в 2 случаях:
- Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
- Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.
RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.
Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.
Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.
Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.
Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.
Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.
Применение формул
Что делать, если под рукой нет такого мультиметра с гнездами измерения, а есть только обычный бытовой прибор? В таком случае необходимо вспомнить законы физики, которые помогут определить емкость.
Для начала вспомним, что в случае, когда конденсатор заряжается от источника неизменного напряжения через резистор, то существует закономерность, согласно которой напряжение на устройстве будет подходить к напряжению источника и в конечном итоге сравняется с ним.
Но для того чтобы этого не ожидать, можно процесс упростить. Например, за определенное время, которое равняется 3*RC, во время заряжения элемент достигает напряжения 95% примененного к RC цепи. Таким образом, по току и напряжению можно определить константу времени. А правильнее, если знать вольтаж в блоке питания, номинал самого резистора, происходит определение постоянной времени, а затем и емкости устройства.
Например, есть электролитический конденсатор, узнать емкость которого можно по маркировке, где прописывается 6800 мкф 50в. Но что если устройство давно лежало без дела, а по надписи сложно определить его рабочее состояние? В этом случае лучше проверить его емкость, чтобы знать наверняка.
Для этого необходимо выполнить следующее:
- С помощью мультиметра измерить сопротивление резистора в 10 кОм. Например, оно получилось равно 9880 Ом.
- Подключаем блок питания. Мультиметр переводим в режим замера постоянного напряжения. Затем подключаем его к блоку питания (через его выводы). После этого в блоке устанавливается 12 вольт (на мультиметре должна появиться цифра 12,00 В). Если же не удалось отрегулировать напряжение в блоке питание, то тогда записываем те результаты, которые получились.
- С помощью конденсатора и резистора собираем электрическую RC-цепь. На схеме ниже указана простая RC-цепочка:
- Закоротить конденсатор и подключить цепь к питанию. С помощью прибора еще раз определить напряжение, которое подается на цепь, и записать это значение.
- Затем необходимо высчитать 95% от полученного значения. К примеру, если это 12 Вольт, то это будет 11,4 В. То есть, за определенное время, которое равняется 3*RC, конденсатор получит напряжение в 11,4 В. Формула выглядит следующим образом:
- Осталось определить время. Для этого устройство раскорачиваем и с помощью секундомера производим отсчет. Определение 3*RC будет вычисляться таким образом: как только напряжение на устройстве будет равно 11,4 В, то это и будет означать нужное время.
- Производим определение. Для этого полученное время (в секундах) делим на сопротивление в резисторе и на три. Например, получилось 210 секунд. Эту цифру делим на 9880 и на 3. Получилось значение 0,007085. Это величина указывается в фарадах, или 7085 мкф. Допустимое отклонение может быть не более 20%. Если учитывать, что на изделии указано 6800 мкф, наши расчеты подтверждаются и укладываются в норматив.
А как определить емкость керамического конденсатора? В этом случае можно сделать определение с помощью сетевого трансформатора. Для этого RC-цепочку подсоединяем ко вторичной обмотке трансформатора, и его подсоединяют в сеть. Далее с помощью мультиметра осуществляется замер напряжения на конденсаторе и на резисторе. После этого необходимо сделать подсчеты: высчитывается ток, что проходит через резистор, затем его напряжение делится на сопротивление. Получается емкостное сопротивление Хс.
Если есть частота тока и Хс, можно определить емкость по формуле:
Сложности проверки
Процесс определения емкости конденсатора непосредственно на плате осложняется присутствием других компонентов цепи — они искажают показания прибора.
В первую очередь это относится к элементам с малым сопротивлением постоянному току: предохранителям, индуктивностям, обмоткам трансформаторов.
Определение емкости конденсатора без выпаивания возможно только при отсутствии упомянутых компонентов.
Оказывают влияние и полупроводниковые приборы — диоды и транзисторы.
При проверке конденсатора на пробой путем измерения сопротивления мультиметр вместо бесконечности (на дисплее «1») отобразит сопротивление P-n перехода. В итоге состояние конденсатора останется неизвестным.
Проверка на схеме
При выпаивании конденсатора он может на некоторое время восстановить свои свойства из-за нагрева. Тестирование его параметров вне схемы даст неверные результаты. Таким свойством, чаще всего, обладает электролитический тип. Как проверить конденсатор мультиметром не выпаивая его — прежде всего, нужно хорошо ознакомиться со схемой.
Конкретный конденсатор находится в определенном месте конкретной схемы. Если начать его проверять без предварительных действий, то другие элементы будут шунтировать тестируемую деталь или существенно влиять на результаты измерений. Если есть возможность — отпаять контакты на других элементах схемы, которые соединены с тестируемой деталью последовательно. После этого может проводиться проверка конденсатора мультиметром.
Особенности проверки
Конденсатор проверяется на исправность различными методами. Основной способ — с выпаиванием из схемы. Иногда можно проверить работоспособность без выпаивания. Но результаты исследования не будут точны — на него влияют прочие компоненты. Для проверки в цепи применяются тестеры с крохотным напряжением на щупах. Малое напряжение предотвращает повреждение остальных элементов платы.
Вне зависимости от особенностей моделей, все электролитические конденсаторы обладают высокой мощностью. При выполнении проверки происходит их подзарядка. Ее продолжительность составляет всего несколько секунд. В процессе зарядки наблюдается увеличение уровня сопротивления, с движением стрелки тестера или изменением цифровых показателей в электронном мультиметре.
Полярные конденсаторы
Эти электролитические кондеры обладают полярностью. При включении в сеть необходима проверка правильного подсоединения. Плюсы соединяем с плюсами, а минусы — с минусами. Игнорирование этого правила приводит к взрыву электролита.
Электролит бывает твердым или жидким. Емкость элементов составляет 0,1—100000 мкФ. Предназначение элементов — выравнивание и фильтрация сигналов. Метки «-» и «+» нанесены на корпусе. Положительный вывод имеет большую длину. При перепутывании полярности происходит пробой диэлектрика, в результате чего электролит мгновенно испаряется и корпус разрывает. Диэлектриком является бумага, пропитанная электролитом. Современные корпуса сверху вдавлены и рассечены крестом. При взрыве распадается не весь, а только верхняя часть. Учитывая специально ослабленные элементы, при неисправности видно вспучивание верхней части.
Неполярные конденсаторы
Отличить визуально неполярный от полярного просто — у него не будет маркировки полярности на корпусе. У неполярных материал диэлектрика другой. Состоит из керамики или стекла. Ток саморазрядки намного меньше, учитывая большую диэлектрическую сопротивляемость, чем у бумаги. Ток утечки тем ниже, чем выше сопротивляемость диэлектрической перегородки.
Соблюдать полярность при включении в схему совсем необязательно. Иногда такие кондеры изготавливают очень маленькими и включают в схему в больших количествах.
Емкость деталей небольшая — от микрофарадов до пикофарадов.
Как проверить конденсатор мультиметром
Промышленность выпускает несколько видов проверочного оборудования для измерения электрических параметров. Цифровые более удобны для измерений и дают точные показания. Стрелочные предпочитают за визуальное движение стрелки.
Если кондер с виду абсолютно цел, проверить его без приборов невозможно. Осуществлять проверку лучше с выпаиванием из схемы. Так показатели считываются точнее. Простые детали редко выходят из строя. Зачастую механически повреждаются диэлектрики. Основная характеристика при проверке — пропуск только переменного тока. Постоянный проходит исключительно в самом начале в течение короткого промежутка времени. Сопротивление детали зависит от существующей емкости.
Предпосылка проверки полярного электролитического конденсатора мультиметром на работоспособность — емкость более 0,25 мкФ. Пошаговая инструкция проверки:
- Разряжают элемент. Для этого металлическим предметом закорачиваются его ножки. Замыкание характеризуется появлением искры и звука.
- Переключатель мультиметра ставится на значение сопротивления.
- Прикасаются щупами к ножкам конденсатора с учетом полярности. Красным к плюсовой ножке, черным тыкаем в минусовую. Это необходимо только при работе с полярным устройством.
Конденсатор начинает заряжаться при подключении щупов. Сопротивление растет до максимума. Если при щупов мультиметр запищит при нулевом значении, значит произошло короткое замыкание. Если сразу на циферблате высвечивается значение 1, то в элементе внутренний обрыв. Такие кондеры считаются неисправными — замыкание и обрыв внутри элемента неустранимы.
Если значение 1 появилось спустя некоторое время, элемент считается исправным.
Проверить неполярный конденсатор еще проще. На мультиметре выставляем измерение на мегаомы. После касания щупами смотрим на показания. Если они окажутся менее 2Мом — деталь неисправна. Более — исправна. Полярность соблюдать ни к чему.
Прозвонка конденсатора мультиметром (аналоговые измерители)
Подобная процедура может быть проделана с помощью аналоговых (стрелочных) измерителей. Величина емкости электролитических конденсаторов определяется тем, с какой скоростью двигается стрелка на приборе в сторону максимального значения. В случае медленного движения стрелки, можно утверждать о большей продолжительности заряда конденсатора, что свидетельствует о его большей емкости. Если же диапазон емкости находится в диапазоне от 1 до 100 микрофарада (мкФ), то достижение стрелкой правой части на циферблате происходит моментально. Если емкость составляет 1000 мкФ, то достижение максимального значения стрелкой происходит за несколько секунд.
Как проверить не выпаивая
Прозвонить конденсатор мультиметром без выпаивания возможно. Для такой проверки подбираем исправный экземпляр с аналогичными характеристиками и впаиваем его в схему параллельно исследуемому. Рабочее устройство скажет о проблеме в первом элементе. Способ не применяется на схеме с высоким напряжением.
Проверить мощный пусковой конденсатор мультиметром можно не выпаивая на наличие искры. Заряженный кондер замыкается отверткой или иным инструментом с изолированной ручкой. Характерный звук с искрой покажут работоспособность прибора.
Замеривать без специальных приборов нежелательно. Легко получить удар током на высоковольтных образцах, да и точные значения не выявить.
Первый способ
Первый способ наиболее простой. Испытуемый проверяется тестером и прозванивается мультиметром. Прибор ставится в режим проверки сопротивления. Также стоит учитывать полярность. Щупы мультиметра соединяются с выводами конденсатора и замеряется сопротивление. Стоит учитывать, что полученное значение не имеет никакой практической пользы, так как может являться показанием другого элемента. Таким способом можно проверить емкостную деталь на короткое замыкание. Если значения на дисплее начали расти постепенно, то печатная деталь заряжается от тестера и является исправной.
Второй способ
Второй способ требует припаять конденсатор с такими же значениями в схему рядом с испытуемым элементом. Впайку нужно провести параллельно. Оба элемента замеряются на обесточенной плате.
Важно! Без выпаивания можно проводить проверку только деталей, являющихся частью низковольтных цепей. Для высоковольтных цепей проводить такую проверку запрещено.
Третий способ
Часто возникает ситуация, когда на плате несколько конденсаторов, и определить какой из них неисправен очень сложно. Выпаивать каждый довольно трудоемко, часто они выходят из строя при нагревании. Для того чтобы проверить не выпаивая, необходимо провести замер выходящего напряжения. Он должен быть таким же, как указано на корпусе элемента. Если напряжения нет, то деталь пробита или замкнута. Если напряжение меньше оптимального значения, элемент потерял часть емкости.
Не выпаивая можно определить неисправный элемент визуально. Конденсатор может просто лопнуть, иметь на корпусе повреждения, нагар или вздутие.
Подготовительный этап
Перед началом проверки необходимо определиться с типом имеющегося конденсатора. Они бывают полярными и неполярными. У полярных на корпусе обозначены плюсовой и минусовый контакт.
Нужно произвести визуальный осмотр. Если присутствуют следующие явления, то радиодеталь однозначно вышла из строя:
- вздутие корпуса или его разрыв;
- потемнения на корпусе или на плате возле контактов;
- потеки электролита.
Если перечисленных явлений не замечено, то следует перейти к дальнейшему этапу. Но перед этим следует не забыть разрядить конденсатор простым замыканием его контактов отверткой с изолированной ручкой.
Внешний осмотр
Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами. Конденсатор подлежит замене, если визуальный осмотр показал наличие:
- даже незначительного вздутия, следов подтеков;
- механических повреждений, вмятин;
- трещин, сколов (актуально для керамики).
Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.
Прибор с функцией измерения емкости
На панели настроек у таких моделей имеется сектор «CX». Диапазон измерений меньше, чем у LC-метра (до 200 мкФ), но для самых распространенных элементов его достаточно.
Проверка выполняется просто:
- переключатель мультиметра устанавливается в сектор «CX» на позицию с числовым значением, ближайшим большим по отношению к ожидаемой емкости;
- выводы конденсатора подносятся к контактным площадкам в секторе «CX» либо их касаются щупами, вставленными в гнезда с такой же пометкой (в зависимости от модели);
- на дисплее отобразится емкость.
Результаты проверки
Электролитические конденсаторы чувствительны к полярности. Гнезда «CX» и контактные площадки помечены значками «+» и «-». Отрицательный вывод конденсатора обозначается галочкой.
Приборы без функции измерения емкости
- черный щуп включают в гнездо «COM» (отрицательный потенциал), красный — в «V/Ω» (положительный потенциал);
- переключатель устанавливают в сектор «Ω» на позицию 2 МОм;
- соблюдая полярность, касаются щупами выводов.
В режиме омметра мультиметр подает на щупы напряжение.
Оно заряжает конденсатор и сопротивление последнего, постепенно нарастает от мизерного до величины свыше 2 МОм или бесконечности (обозначается единицей на дисплее).
Рост сопротивления объективнее всего отражает аналоговый (стрелочный) тестер.
О неисправности свидетельствует такое поведение прибора, когда сопротивление:
- сразу стало бесконечным: оборван вывод;
- остановилось на отметке ниже 2 МОм: конденсатор пробит.
По времени, за которое сопротивление возрастает от минимума до максимума, путем сравнения с заведомо исправными конденсаторами, можно приблизительно определить емкость исследуемого.
Определение рабочего напряжения конденсатора
Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.
Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть “на глазок” рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.
Способ №1: определение рабочего напряжения через напряжения пробоя
Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.
Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.
Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).
За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.
Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения.
Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:
А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).
Способ №2: нахождение рабочего напряжения конденсатора через ток утечки
Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.
Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:
и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.
У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):
Напряжение на конденсаторе, ВТок утечки, мкАПрирост тока, мкА
10 | 1.1 | 1.1 |
20 | 2.2 | 1.1 |
30 | 3.3 | 1.1 |
40 | 4.5 | 1.2 |
50 | 5.8 | 1.3 |
60 | 7.2 | 1.4 |
70 | 8.9 | 1.7 |
80 | 11.0 | 2.1 |
90 | 13.4 | 2.4 |
100 | 16.0 | 2.6 |
Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.
Если из полученных значений построить график, то он будет иметь следующий вид:
Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:
Стандартный ряд номинальных рабочих напряжений конденсаторов, В
6.3 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 | 350 | 400 | 450 | 500 |
то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.
Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.
Какие неисправности могут случиться в конденсаторе
Прежде чем учиться искать неисправности конденсатора, необходимо разобраться, в чем же они могут заключаться. Иными словами – нужно знать, что искать.
Итак, полный выход из строя или неправильная работа этого элемента схемы может выражаться в следующем:
- Пробой между обкладками конденсатора. Обычно вызывается превышением допустимого напряжения на выводах. По сути, участок цепи, который должен «разрываться» конденсатором, получается замкнутым.
- Обрыв между выводом конденсатора и обкладкой. Может случиться из-за вибрационного или иного механического воздействия, от превышения допустимого напряжения. Нельзя исключить и производственный брак. На деле получается, что конденсатор в схеме попросту отсутствует – на его месте банальный разрыв цепи.
- Повышенный ток утечки – в связи с потерей диэлектрических качеств разделяющего обкладки слоя происходит «перетекание зарядов». Конденсатор не в силах сохранять полученный заряд достаточное для его корректной работы время.
- Недостаточная емкость конденсатора. Может вызываться повышенным током утечки или же опять, чего греха таить, производственным браком. В результате схема, в которую включен такой конденсатор, работает некорректно, неустойчиво, или вовсе становится неработоспособной.
- Для электролитических полярных конденсаторов выделяют еще один возможный дефект – это превышение эквивалентного последовательного сопротивления ЭПС (ESR). Как известно, такие конденсаторы, работая в схемах с высокочастотными токами, способны «фильтровать» постоянную составляющую и пропускать частотный сигнал. Но этот сигнал может «подавляться» повышенным ЭПС, по аналогии с обычным резистором, значительно снижая его уровень. Что, кстати, одновременно ведет и к нагреву таких элементов схемы.
ЭПС складывается из нескольких факторов:
— обычное активное сопротивление проволочных выводов, обкладок и точек их соединения.
— сопротивление, вызванное неоднородностью диэлектриков, наличием примесей или влаги.
— сопротивление электролита, которое способно изменяться (нарастать) по мере испарения, высыхания, постепенного изменения химического состава.
Для ответственных схем показатель ЭПС имеет очень важное значение. Но, к сожалению, именно эту величину оценить и сравнить с допустимой табличной без использования специфических приборов – невозможно.
Специальный прибор для диагностики конденсаторов, позволяющий оценить и их емкость, и показатель эквивалентного последовательного сопротивления (ESR)
Справедливости ради надо сказать, что некоторые пытливые мастера самостоятельно заготавливают приборы-приставки для оценки ESR и используют их в связке с самыми обычными цифровыми мультиметрами. При желании в интернете можно отыскать немало схем подобных приставок.
Приставка к мультиметру типа DT, позволяющая оценивать показатель ESR электролитических конденсаторов.
Пример таблицы допустимых значений эквивалентного последовательного сопротивления (в омах – Ω) для электролитических конденсаторов различных номиналов емкости (μF) и напряжения (V):
10 V | 16 V | 25 V | 35 V | 50 V | 63 V | 100 V | 160 V | 250 V | 350 V | 450 V | |
1 μF | — | — | 2.1 | 2.4 | 4.5 | 4.5 | 8.5 | 9.5 | 8.7 | 8.5 | 3.6 |
2.2 μF | — | — | 2.0 | 2.4 | 4.5 | 4.5 | 2.3 | 4.0 | 6.1 | 4.2 | 3.6 |
3.3 μF | — | — | 2.0 | 2.3 | 4.7 | 4.5 | 2.2 | 3.1 | 4.6 | 1.6 | 3.5 |
4.7 μF | — | — | 2.0 | 2.2 | 3.0 | 3.8 | 2.0 | 3.0 | 3.5 | 1.6 | 5.7 |
10 μF | — | 8.0 | 5.3 | 2.2 | 1.6 | 1.9 | 2.0 | 1.2 | 1.4 | 1.2 | 6.5 |
22 μF | 5.4 | 3.6 | 1.5 | 1.5 | 0.8 | 0.9 | 1.5 | 1.1 | 0.7 | 1.1 | 1.5 |
33 μF | 4.3 | 2.0 | 1.2 | 1.2 | 0.6 | 0.8 | 1.2 | 1.0 | 0.5 | 1.1 | — |
47 μF | 2.2 | 1.0 | 0.9 | 0.7 | 0.5 | 0.6 | 0.7 | 0.5 | 0.4 | 1.1 | — |
100 μF | 1.2 | 0.7 | 0.3 | 0.3 | 0.3 | 0.4 | 0.15 | 0.3 | 0.2 | — | — |
220 μF | 0.6 | 0.3 | 0.25 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | — | — |
330 μF | 0.24 | 0.2 | 0.25 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | — | — |
470 μF | 0.24 | 0.18 | 0.12 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.15 | — | — |
1000 μF | 0.12 | 0.15 | 0.08 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
2200 μF | 0.12 | 0.14 | 0.14 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
3300 μF | 0.13 | 0.12 | 0.13 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
4700 μF | 0.12 | 0.12 | 0.12 | .01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
Как измерить ток утечки конденсатора?
Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.
Также можно вычислить ток утечки конденсатора косвенным методом – через падение напряжения на заранее известном сопротивлении:
При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.
При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.
Меры предосторожности при проверке
Разрядка конденсатора является обязательной. Особенно это касается высоковольтных деталей — могут вывести мультиметр из строя или поразить человека электротоком. Разряжают касанием ножек металлическим предметом или подключением лампы. Второй способ процесс разряда делает более плавным.
Во время измерения нельзя касаться руками открытых частей щупа — человеческое тело имеет малое сопротивление и высокий показатель утечки. В этом случае замер окажется неправильным. Ток пойдет по пути наименьшего сопротивления и показатели покажут значение, не имеющее отношения к конденсатору.
Измерение на высоковольтных конденсаторах выполняются в резиновых перчатках и изолированными приборами.
Штатно работающий электронный компонент способен накапливать и отдавать некоторое количество электричества. Поломки при работе определяются не только визуально, но и посредством мультиметра. Тестирование измерительным прибором способно прояснить пригодность элемента для дальнейшего использования.